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Abstract. We study the problem of determining the distribution of vertices of a particular given type in
the set of all Feynman tree graphs in quantum field theories. We show that in almost all cases a Gaussian
distribution arises asymptotically, and we compute the mean and variance of this distribution for several
theories. We show that the distribution’s “fine structure”, arising from topological sum rules, can be
obtained.

1 Introduction

Recently, computational prowess in particle phenomenol-
ogy has progressed to the evaluation of multi-particle scat-
tering amplitudes, at least at the tree level, with ten or
more external legs. The concomitant enormous number of
Feynman graphs (e.g. 10.5 million for gluonic 2 → 8 scat-
tering) suggests the study of the Feynman graphs them-
selves as an ensemble of combinatorial objects. The num-
ber of graphs for various processes in self-interacting theo-
ries has been studied in a number of publications [1,2], and
also results for theories involving different particles have
been found [3]. It is therefore natural to examine various
statistical aspects of these ensembles more closely. In the
present paper we deal with the problem of determining
the frequency of the occurrence of particular vertices. For
instance, one may wish to find the frequency of the occur-
rence of four-gluon vertices in the ensemble of Feynman
graphs for gluonic QCD: it is this kind of question that
we address in this paper. The lay-out of this paper is as
follows. First, we show that the frequency distribution of
any kind of vertex tends to a Gaussian distribution as the
number of external lines becomes asymptotically large. We
then proceed to evaluate the parameters of these distribu-
tions for several theories, notably gluonic QCD and theo-
ries with all possible vertices present. These results hold
for the “coarse-grained” point of view in which the num-
ber of vertices is interpreted as a continuous, rather than a
discrete, fraction of the number of legs. Subsequently, we
discuss how the “fine structure” of the distribution can be
determined: this fine structure arises from the topological
conservation laws that govern the number of vertices in
any tree amplitude with a given number of legs. Finally,
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we turn to the more realistic case of QCD, in which both
quark and gluon fields occur.

2 Gaussian limits for vertex occurrence

Consider a self-interacting theory of a single field ϕ. Since
we will only be counting diagrams and vertices, the par-
ticular types of interactions are only important in terms
of the number of legs involved in each vertex. We shall
start with a quick review of the counting of diagrams. Let
the theory have vertices of type ϕq+1 for some set of num-
bers q ≥ 2 (that is, we allow any combination of 3, 4, 5, . . .
vertices). We define the “potential”

W (ϕ) =
∑
q≥2

εq
q!
ϕq, (1)

where εq = 1 if the vertex occurs in the action (or effective
action); otherwise it is zero. If we denote the tree-level
1 → n amplitude1 by a(n), we can define the amplitude-
generating function by

φ(x) =
∑
n≥1

xn

n!
a(n). (2)

Then simple diagrammatic arguments [1] show that the
Schwinger–Dyson equation for the number of diagrams is

φ(x) = x+W (φ(x)). (3)

Iteration of this relation, where φ(x) is a power series in
x, then gives the number of graphs for any desired value
of n; alternatively, the analytical structure of φ(x) as a

1 Throughout this paper, the “amplitude” is defined as the
number of diagrams
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function of x informs us about the asymptotic behavior of
a(n) with n. In particular, it is clear that in the general
case φ(x) will be singular in x, and moreover that this
singularity will be a branch cut rather than a pole. The
condition for the singularity is, of course∣∣∣∣dφ(x)

dx

∣∣∣∣ = ∞ ⇒ dx
dφ

= 0 ⇒ W ′(φ) = 1. (4)

Since q ≥ 2 there are in general several solutions φ0 to
this condition, and the radius of convergence of φ(x) as
a power series is given by that solution φ0 which leads to
the smallest absolute value of x = φ0 − W (φ0). Taking
this value of φ0, we see that, asymptotically, the number
of graphs goes as

a(n) ∼ n!
(φ0 −W (φ0))n

, (5)

multiplied by subleading terms: in fact, the more precise
form has been derived in [1] to read

a(n) ∼ n!
n3/2

1
(φ0 −W (φ0))n

√
φ0 −W (φ0)
2πW ′′(φ0)

, (6)

but for the moment the leading form (5) is sufficient.
We now turn to the counting of vertices. Let us focus

on the vertex of type ϕq+1 for some q with εq = 1. We can
count the occurrence of this vertex by giving it a weight z
in the Schwinger–Dyson equation (3), which then becomes

φ(x, z) = x+W (φ(x, z)) + (z − 1)
φ(x, z)q

q!
. (7)

The amplitude-generating function now depends on z as
well as on x. By iteration of this implicit equation we can
find

φ(x, z) =
∑
n≥1

xn

n!
a(n; z) (8)

to desired order in x. In the coefficient

a(n; z) =
∑
m≥0

b(n;m)zm, (9)

which is a finite polynomial in z, the number b(n;m) is
then the number of 1 → n graphs with preciselym vertices
of type ϕq+1 and a(n; 1) is the total number of graphs. It
is more instructive to consider not the number of graphs
themselves but rather the probability to pick a diagram
with m (q + 1) vertices at random out of all tree graphs
in the 1 → n amplitude. If we denote this probability by
π(n;m), we have simply

Pn(z) ≡
∑
m≥0

π(n;m)zm =
a(n; z)
a(n; 1)

. (10)

Putting in the leading asymptotic behavior for a(n) of (5)
we therefore find that∑

m≥0

π(n;m)zm ∼
(
F (φ0(1); 1)
F (φ0(z); z)

)n

,

F (ϕ; z) ≡ ϕ−W (ϕ) − (z − 1)
ϕq

q!
, (11)

and φ0(z) is of course the value of φ(x; z) at the singularity
nearest to the origin in the complex x plane:

W ′(φ0(z)) + (z − 1)
φ0(z)q−1

(q − 1)!
= 1. (12)

The distribution of the m values is determined once we
know its moment-generating (or characteristic) function.
It is simply related to the result we have obtained:

〈
emξ

〉 ≡
∑
k≥0

ξk

k!
〈
mk
〉

=
∑

m,k≥0

π(n;m)
mkξk

k!
(13)

=
∑
m≥0

π(n;m)(eξ)m =
(
F (φ0(1); 1)
F (φ0(eξ); eξ)

)n

.

But, by elementary arguments from probability theory,
this implies that m is distributed as the sum of n indepen-
dent, identically distributed random variables. The central
limit theorem therefore asserts (except in special cases to
which we shall come later) that for large n, the values of
m are normally distributed:

π(n;m) ∼ 1√
2πnσ2

exp
(

− n

2σ(q)2
(m
n

− µ(q)
)2
)
, (14)

with the parameters µ(q) and σ(q)2 still to be determined
(note that since m is always integer, it is rather the ratio
m/n that follows the continuous normal distribution).

3 Results for various theories

Having established that the m values are normally dis-
tributed, we need only to compute the mean and variance.
We have for the first two factorial moments

〈m〉 = P ′
n(1), 〈m(m− 1)〉 = P ′′

n (1). (15)

Some straightforward algebra then leads us to

µ(q + 1) =
fq

q!(f −W (f))
,

σ(q + 1)2 = µ(1 + µ) (16)

−
(

fq−1

(q − 1)!

)2 1
W ′′(f)(f −W (f))

,

where f = φ0(1); henceW ′(f) = 1. Note that, since all the
Taylor coefficients of W (ϕ) are non-negative, the numbers
f , f−W (f) andW ′′(f) are all positive. As a further check,
we recall the topological relation, valid for any given tree
diagram, ∑

k≥3

(k − 2)mk = n− 1, (17)

where mk is the number of vertices of type ϕk in that
diagram. Indeed, it is trivially seen that∑

q≥2

εq(q − 1)µ(q + 1) = 1. (18)
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Fig. 1. Frequency distribution of the number of four-point
vertices in ϕ3 + ϕ4 theory, for n = 25. The solid line is the
asymptotic estimate

In addition, we can straightforwardly extend our discus-
sion to the case where we consider the combined distribu-
tion of two different vertex types, with q1+1 and q2+1 legs
(q1 
= q2), by introducing two counting weights z1,2. The
result for the expected value of the product mq1+1mq2+1
is, then,

〈mq1+1mq2+1〉 =
n2 + n

(f −W (f))2
fq1+q2

q1!q2!
(19)

− n

W ′′(f)(fW (f))
fq1+q2−2

(q1 − 1)!(q2 − 1!)
,

which provides the additional check:

0 =
∑

q

εq(q − 1)2σ(q + 1)2

+
∑

q1 �=q2

εq1εq2(q1 − 1)(q2 − 1)

×
( 〈mq1+1mq2+1〉

n
− µ(q1 + 1)µ(q2 + 1)

)
. (20)

We now turn to a few concrete cases. In the first place,
there is gluonic QCD, with three- and four-point vertices,
so that

W (ϕ) =
1
2
ϕ2 +

1
6
ϕ3. (21)
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Fig. 2. Frequency distribution of the number of four-point
vertices in ϕ3 + ϕ4 theory, for n = 55. The solid line is the
asymptotic estimate

For z = 1, the nearest singularity is at x = 31/2 − 4/3,
reached for f = φ0(1) = −1 + 31/2. We find that

µ(3) =
6
√

3 − 3
11

, σ(3)2 =
52

√
3 − 48
121

,

µ(4) =
7 − 3

√
3

11
, σ(4)2 =

13
√

3 − 12
121

. (22)

In Figs. 1 and 2 we give the frequency distribution of the
four-point vertices for this theory, for n = 25 (2.3 × 1032

diagrams) and n = 55 (5.5 × 1091 diagrams). In Fig. 3,
we give the actual value of the average number of four-
point vertices as a fraction of n, for 1 ≤ n ≤ 80. The
asymptotic value, 0.163986 . . ., is reached from below (as
already evident from Figs. 1 and 2): the correction term
appears to go as 1/4n in this range.

The second case of interest is a theory (like an effective
theory, after tadpole and mass renormalization) where all
types of vertices occur, that is, εq = 1 for all q. We have

W (ϕ) = eϕ − ϕ− 1, (23)

so that f = log(2), f−W (f) = 2 log(2)−1, and W ′′(f) =
2, and we have

µ(q + 1) =
(log 2)q

q!(2 log 2 − 1)
,

σ(q + 1)2 = µ(q + 1)
[
1 + µ− (log 2)q−2

2(q − 1)!

]
. (24)
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Fig. 3. Average fraction 〈m〉/n for four-point vertices, as a
function of n, in ϕ3 + ϕ4 theory
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Fig. 4. log µ(q) as a function of q for a theory with all possible
vertices

In Fig. 4 we plot logµ(q + 1) for the first few values of q
for this theory. The values of σ(q+1)2 follow quite closely:
the numerical values of σ(6)2 and µ(6) already differ by
less than one percent.

4 Fine structure

In Fig. 5, we give the actual and asymptotic distribution
of three-point vertices in ϕ3+ϕ4 theory, for n = 35. Every
Feynman diagram contains an even number of three-point
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Fig. 5. Frequency distribution of three-point vertices in ϕ3 +
ϕ4 theory, for n = 35. The solid line is the coarse-grained
asymptotic estimate

vertices. This follows of course from the topological sum
rule for this theory:

m3 + 2m4 = n− 1, (25)

so that m3 is either always even or always odd, depend-
ing on the parity of n. The asymptotic estimate does not
reflect this; we shall now describe how also this “fine struc-
ture” can be obtained, even in the asymptotic limit, as a
consequence of the algebraic structure of the action. In
order to be slightly more general, let us assume that there
are two types of vertices present, one with q + 1 legs and
one with p+ 1 legs, and that we count the number of ver-
tices of the first type. The Schwinger–Dyson equation now
reads

φ = x+ z
φq

q!
+
φp

p!
, (26)

and the condition for the singularity reads

z
φq−1

(q − 1)!
+

φp−1

(p− 1)!
= 1. (27)

After having obtained a(n; z), we can of course extract
b(n;m) by standard means:

b(n;m) =
1

2iπ

∫
z∼0

a(n; z)
zm+1 dz, (28)

where the integral is over an infinitesimal counterclockwise
loop around z = 0. Now notice that, for z = 0, the singu-
larity condition has not one but p − 1 distinct solutions,
which we shall denote by φk:
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φk = (s!)1/s exp
(

2iπk
s

)
,

k = 0, 1, 2, . . . , s− 1, s ≡ p− 1. (29)

The corresponding values for x = φk − φp
k/p! all have the

same absolute value (at z = 0, to be sure) and contribute
equally to the asymptotic result. It therefore makes more
sense to perform the integral not in terms of z but in terms
of the φk, using (6). To this end, we write, for non-zero z,
the singularity condition as

z =
(q − 1)!
φq−1

(
1 − φs

s!

)
=

“H”(φs)
φq−1 , (30)

where by “H”(φs) we denote an unspecified function of
φs. Inserting this expression for z everywhere, we find

F (φ, z) = φ“H”(φs),
∂2

∂φ2F (φ, z) =
“H”(φs)

φ
,

dz
dφ

=
“H”(φs)

φq
. (31)

The above form for b(n;m) is now a sum of loop integrals:

b(n;m) ∼
s−1∑
k=0

n!
2iπn3/2

∫
φ∼φk

1
zm+1F (φ, z)n

×
√√√√√ −F (φ, z)

2π
∂2

∂φ2F (φ, z)

dz
dφ

dφ

=
s−1∑
k=0

∫
φ∼φk

1
φn−m(q−1) “H”(φs)dφ

=
∫

φ∼φ0

1
φn−m(q−1) “H”(φs)dφ

×
(

s−1∑
k=0

exp
(

2iπk
s

)1−n+m(q−1)
)
, (32)

owing to the s-fold symmetry of the unspecified function
“H”(φs). Now, the sum of the powers of the roots of unity
in the above gives zero except when 1 − n + m(q − 1)
happens to be a multiple of s = p− 1, or in other words

m(q − 1) +m′(p− 1) = n− 1 (33)

for some m′, which is again precisely the topological sum
rule. In that case, we find exactly s times the result from
a single singular point, so that the normalization of the
asymptotic distribution is preserved.

Two remarks are in order here. In the first place, the
conclusion remains unchanged if other vertices are present,
as long as these all have ks+ 1 legs (k any integer larger
than 1). If this algebraic symmetry is destroyed by the
presence of another vertex type, there will in general be
only one dominant singular point, and the vertex fre-
quency distribution will not show any “quantization” any-
more. In the second place, it is instructive to note that

we arrive at the quantization condition by working in the
neighborhood of z = 0: once we move out to z = 1,
where the singular points are no longer symmetrically dis-
tributed, we move toward coarse-graining and a continu-
ous distribution.

5 Vertex counting in QCD

We now turn to the more realistic case of QCD with both
quarks and gluons. For simplicity we shall only consider
a single quark flavor, as extensions to the cases of more
flavors are straightforward. We shall count the various ver-
tices by assigning to the qq̄g vertex a weight zq, and to the
three- and four-gluon vertices weights z3 and z4, respec-
tively. In any 1 → n amplitude we shall assign a factor
ū to an outgoing quark, a factor v to an outgoing anti-
quark, and a factor x to an outgoing gluon as before. The
amplitude-generating function for an incoming quark is
denoted by ψ̄, that for an incoming antiquark by ψ, and
that for an incoming gluon by φ, again as before. The
QCD Feynman rules now lead to the following coupled
Schwinger–Dyson equations at the tree level:

ψ̄ = ū+ zqψ̄φ, ψ = v + zqψφ,

φ = x+
z3
2
φ2 +

z4
6
φ3 + zqψ̄ψ. (34)

We can rewrite this as an equation in terms of φ alone:

φ = x+
z3
2
φ2 +

z4
6
φ3 +

zqξ

(1 − zqφ)2
, ξ ≡ ūv. (35)

The occurrence of the combination ξ reflects fermion num-
ber conservation. The generating function φ is

φ = φ(x, ξ, 	z)

=
∑

ng≥0

∑
nq≥0

∑
m3≥0

∑
m4≥0

∑
mq≥0

c(ng, nq;m3,m4,mq)

×xng

ng!
ξnq

nq!2
zm3
3 zm4

4 zmq
q , (36)

where 	z = (z3, z4, zq), and c(ng, nq;m3,m4,mq) denotes
the number of Feynman tree graphs with one incoming
gluon, ng outgoing gluons, nq outgoing qq̄ pairs, and pre-
cisely m3 three-gluon vertices, m4 four-gluon vertices and
mq quark–gluon vertices. Again, explicit iteration of this
equation gives φ as a multinomial in all its arguments,
from which the number of graphs can be read off easily.
Due to the larger number of counting variables the arriv-
ing at asymptotic estimates is more cumbersome in this
case, but not qualitatively different. We have

x = F (φ, ξ, 	z)

= φ− z3
2
φ2 − z4

6
φ3 − zqξ

(1 − zqφ)2
, (37)

and the large-ng behavior is determined as before by re-
quiring dx/dφ to vanish, which occurs when

ξ = Ξ(φ, 	z) =
1

2z2
q

(1 − zqφ)3
(
1 − z3φ− z4

2
φ2
)
. (38)
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For this value of ξ we then have

X(φ, 	z) = F (φ,Ξ(φ, 	z), 	z) (39)

=
3
2
φ− z3φ

2 − 5
12
φ3 +

1
2zq

(
1 − z3φ− z4

2
φ2
)2
.

By the same arguments as before, we find that the leading
asymptotic behavior is given by

g(ng, nq;	z) =
∑

m3,4,q

c(ng, nq;m3,m4,mq)zm3
3 zm4

4 zmq
q

∼ 1

X(φ̂, 	z)ngΞ(f, 	z)nq

, (40)

where the saddle point f is determined by[
∂

∂φ

(
ng logX(φ, 	z) + nq logΞ(φ, 	z)

)]
φ=f

. (41)

From (40) it follows, by the probabilistic argument used
before, that for ng, nq → ∞ the numbers m3, m4 and mq

are all normally distributed. The mean values and vari-
ances are again found by taking the appropriate deriva-
tives at 	z = (1, 1, 1). The saddle-point value is, in that
case, given by2

R(ρ, f) ≡ 6(1−ρ)−12f+3(1+ρ)f2+(3−ρ)f3 = 0, (42)

where
nq ≡ ρN, N = ng + 2nq. (43)

The solution is given by

f =
1

3 − ρ

{
− 1 − ρ

− 2b sin
[
1
3

arcsin
(

2
b3
(
ρ3 − 9ρ2 + 15ρ− 23

))]}
,

b =
(
13 − 2ρ+ ρ2)1/2

. (44)

The solution f interpolates smoothly from −1 + 31/2 ∼
0.732 at ρ = 0 to −3/5 + 14/5 sin(arcsin(282/343)/3) ∼
0.2854 at ρ = 1/2. The results for the mean values are

〈mq〉 =

N
6 + 3f2 − 12ρf2 − 12f − 18ρf + 3f3 + 13ρf3 + 5ρf4

(1 − f)(−24f + 5f3 + 9f2 + 6)
,

〈m3〉 =

N
2f(18f − 12ρf − 6f3 + 7ρf3 − 9f2 + 9ρf2 − 6 + 6ρ)

(−24f + 5f3 + 9f2 + 6)(−2 + f2 + 2f)
,

〈m4〉 = (45)

N
f2(16f − 8ρf − 5f3 + 5ρf3 − 7f2 + 5ρf2 − 6 + 6ρ)

(−24f + 5f3 + 9f2 + 6)(−2 + f2 + 2f)
.

2 There are other roots, but since these do not depend on ρ
they cannot be relevant ones
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Fig. 6. Expected number of vertices of given type as a fraction
of N = ng + 2nq in QCD with a single quark flavor. Along the
horizontal axis we plot ρ = nq/N . The rising curve is the result
for the quark–gluon vertices, the falling curves are for the four-
gluon vertex (lowest curve) and the three-gluon vertex (middle
curve)

In Fig. 6 we give the results for the expectation values
〈mj〉/N , with j = q, 3, 4. As a final check, note that the
topological sum rule for the vertices in this case reads

m3 + 2m4 +mq = ng + 2nq − 2 ∼ N. (46)

This is borne out by the numerical results, but also the
analytic estimates (45) show that the combination

〈m3 + 2m4 +mq −N〉
is precisely proportional to R(f, ρ) and hence vanishes at
the saddle point.
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